Demonstrating Numerical Convergence to the Analytic Solution of some Backwards Reachable Sets with Sharp Features∗

نویسنده

  • Ian Mitchell
چکیده

We examine the convergence properties of a level set algorithm designed to track evolving interfaces; in particular, its convergence properies on a series of two and three dimensional backwards reachable sets whose flow fields involve kink formation (sharp features) and, in some cases, rarefaction fans introduced by input parameters in the dynamics. The chosen examples have analytic solutions to facilitate the convergence analysis. We describe the error analysis method, the formulation of reachability in terms of a Hamilton-Jacobi equation, and our implementation of the level set method in some detail. In addition to the convergence analysis presented here, these techniques and examples could be used to validate either other nonlinear reachability algorithms or other level set implementations. keywords: nonlinear reachability, Hamilton-Jacobi equations, convergence analysis ∗Research supported by ONR under MURI contract N00014-02-1-0720 and by DARPA under the Software Enabled Control Program (AFRL contract F33615-99-C-3014)

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Limit Shapes of Reachable Sets of Singularly Perturbed Linear Control Systems

We study shapes of reachable sets of singularly perturbed linear control systems. The fast component of a phase vector is assumed to be governed by a hyperbolic linear system. We show that the shapes of reachable sets have a limit as the parameter of singular perturbation tends to zero. We also find a sharp estimate for the rate of convergence. A precise asymptotics for the support function of ...

متن کامل

Some properties of band matrix and its application to the numerical solution one-dimensional Bratu's problem

A Class of new methods based on a septic non-polynomial spline function for the numerical solution one-dimensional Bratu's problem are presented. The local truncation errors and the methods of order 2th, 4th, 6th, 8th, 10th, and 12th, are obtained. The inverse of some band matrixes are obtained which are required in proving the convergence analysis of the presented method. Associated boundary f...

متن کامل

Analytic Approach to Investigation of Fluctuation and Frequency of the Oscillators with Odd and Even Nonlinearities

In this paper we examine fluctuation and frequency of the governing equation ofoscillator with odd and even nonlinearities without damping and we present a new efficientmodification of the He’s homotopy perturbation method for this equation. We applied standard andmodified homotopy perturbation method and compare them with the numerical solution (NS), also weapplied He’s Energy balance method (...

متن کامل

NON-POLYNOMIAL SPLINE FOR THE NUMERICAL SOLUTION OF PROBLEMS IN CALCULUS OF VARIATIONS

A Class of new methods based on a septic non-polynomial spline function for the numerical solution of problems in calculus of variations is presented. The local truncation errors and the methods of order 2th, 4th, 6th, 8th, 10th, and 12th, are obtained. The inverse of some band matrixes are obtained which are required in proving the convergence analysis of the presented method. Convergence anal...

متن کامل

The new implicit finite difference method for the solution of time fractional advection-dispersion equation

In this paper, a numerical solution of time fractional advection-dispersion equations are presented.The new implicit nite dierence methods for solving these equations are studied. We examinepractical numerical methods to solve a class of initial-boundary value fractional partial dierentialequations with variable coecients on a nite domain. Stability, consistency, and (therefore) convergenceof t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2004